From: Chironomids - From Genes to Ecosystems (Ed. P. S. Cranston) C S I R O, Melbourne 1995.

Appendix to paper by C. P. Madden, A. D. Austin, \& P. J. Suter - Pollution monitoring using chironomid larvae. What is a deformity? pp.89-94

Appendix
Description of Chironomus maddeni sp. nov
Jon Martin ${ }^{1}$ and Peter S. Cranston ${ }^{2}$
${ }^{1}$ Genetics Department, University of Melbourne,
Parkville, 3052, Australia
${ }^{2}$ CSIRO Division of Entomology, GPO Box 1700 ,
ACT 2601, Australia

Introduction

In the preceding study (Madden et al., 1995), the investigated species of Chironomus evidently is undescribed. This judgement is based upon comparison with the cytology of all known species of Australian Chironomus by the senior author of this appendix contribution. Here we provide details of the cytology and morphology of all stages and provide a formal description of Chironomus maddeni as a species new to science.

Chironomus maddeni n.sp.
Type locality: South Australia, Glen Osmond, pool in grounds of Waite Institute, University of Adelaide
Description. Conforms in all stages with the generic diagnoses of Cranston et al. (1989; adult male), Pinder and Reiss (1986; pupa) and Pinder and Reiss, (1983; larva). All measurements in $\mu \mathrm{m}$ unless stated (as mm).

Adult Male ($\mathrm{n}=2$) (Fig. 4a,b)
Body length 5.3-5.6 mm, wing length 2.4-2.5 mm, colour yellow to pale brown with mid-brown scutal vittae, scutellum, and pre-episternum. Abdomen pale, with brown, broadly diamond-shaped transverse area in basal half of tergites I-IV. Legs pale, unbanded.

Head. Without frontal tubercles, with 25-27 temporal setae in a continuous multiserial row from frontals to postoculars, $19-21$ clypeals. Antenna with apical flagellomere $850-920 \mu \mathrm{~m}$ long, basal 10 flagellomeres $320-355$ long, Antennal Ratio 2.55-2.60. Palp segment 2-5 lengths: 50-65, 140-150, 180-205, 240-315.

Thorax with quite prominent scutal tubercle. Thoracic setation: acrostichals about 8, biserial, dorsocentrals 10-12 anteriorly uniserial, posteriorly biserial, 5 prealars, 12-14 scutellars. Wing with Venarum Ratio 1.03. Vein setation: R with $31, R_{2+3} 27-29, R_{4+5} 31-34$; squama with $14-16$.

Leg lengths and proportions as follows:

	Fe	Ti	Tal	Ta	Ta 3	Ta4
PI	$1045-1080$	$865-900$	$1510-1620$	$765-790$	$570-580$	$500-505$
PII	$1115-1225$	$1010-1045$	$610-615$	$325-360$	$250-320$	$175-180$
PIII	$1260-1295$	$1225-1295$	$900-935$	$505-540$	$360-395$	$215-220$
	Ta 5	LR	BV	SV	BR	
PI	$215-250$	$1.75-1.80$	$1.69-1.70$	$1.22-1.26$	$2.0-2.5$	
PII	$105-110$	$0.58-0.60$	$2.92-3.20$	$3.47-3.70$	$3.0-4.0$	
PIII	$140-145$	$0.72-0.73$	$2.72-2.76$	$2.75-2.76$	$3.0-4.0$	

Figure 4. Chironomus maddeni sp. nov., adult: (a) male hypopygium; (b) superior volsella, (c) female antenna apex.

Sensilla chaetica: PII with $5-6$ on subapex of Ti_{1}, PIII with $7-8$ on subapex of Ti_{1}.
Hypopygium: see Figure 4a, b.
Adult female ($\mathrm{n}=2$)
Body length $5.3-5.4 \mathrm{~mm}$, wing length $2.8-2.9 \mathrm{~mm}$, colour as male; abdomen less well marked than in male. Head. Without frontal tubercles, with $22+$ temporal setae in a continuous multiserial row from inner verticals, 26 clypeals. Antenna (Fig. 4c) with apical flagellomere 400-420 long, basal 5 flagellomeres 156-158 long, Antennal Ratio 0.350.37. Palp segment 2-5 lengths: 52-60, 140-155, 190-210, 315-335.

Thoracic setation: antepronotals absent, acrostichals c. 17, biserial, dorsocentrals 27-28 biserial, 6 prealars, 14-21 scutellars. Wing with Venarum Ratio 1.02-1.09; setation: R with $35-40, R_{1} 32-35, R_{4+5} 78-80$, squama with 13-16.

Leg lengths and proportions as follows:

	Fe	Ti	Tal	Ta2	Ta3	Ta4
PI	$1190-1260$	$972-1010$	-	-	-	
PII	$1290-1295$	$1190-1260$	$650-685$	$325-360$	$250-255$	180
PIII	$1405-1440$	$1440-1475$	$1010-1045$	$540-576$	$430-435$	250
	Ta5	LR	BV	SV	BR	
PI						
PII	145	$1.74-1.83$	$3.38-3.48$	$3,63-3.94$	$4.0-5.5$	
PIII	145	$1.40-1.46$	$2.79-2.84$	$2.75-2.85$	$3.5-4.0$	

Sensilla chaetica: PII with $50-60$ uniserial, absent only on basal 10% of Ti_{1}, PIII with $60-70$ uniserial, absent only on basal 10% of Ti_{1}.

Genitalia: typical for Chironomus s.str.
Pupa $(\mathrm{n}=10)$ (Fig. 5d-g).
Pale brown, with basal ring and tracheal bases, abdominal apophyses, posterolateral spur and bases of anal lobe setae all darker brown. Cephalic tubercles (Fig. 5d) mid-brown, 122-157 long subapically bearing 28-25 long frontal seta. Thorax with dense brown rugulosity to midpoint (Fig. 5e). Basal ring oval, 120-132 long, 58-98 wide, with elliptical fused double tracheal bases.

Abdomen (Fig. 5f) with very restricted shagreen, present only along apophyses on TV and TVI. Pedes spurii B quite strong on II. Pedes spurii A on IV, much weaker on V, absent on VI. Tergal spinule pattern as in Figure 5f. Hook row with 60-75 hooks, extending about $55-60 \%$ of the width of tergite II. Conjunctives all bare. Paratergite IV with narrow spines, remainder bare. Setation ('O', D, V and L) typical for genus. Posterolateral spur (Fig. 5g) simple, narrow, tapering to fine point, sometimes with one or two small fine spines at base. Anal lobe with about 150 multiple ranked setae in fringe (not drawn).

Fourth-instar larva ($\mathrm{n}=10$) (Fig. 5a-c).
Medium sized, length about $15-18 \mathrm{~mm}$ (female), $13-14 \mathrm{~mm}$ (male). Head capsule with mentum mid-brown, mandibular teeth brown, remainder of mandible yellow, gular region slightly darkened towards posterior margin, very slight darkening of frontoclypeus and dark brown to black occipital margin. Ventral tubules relatively short (c. 0.65 1.3 mm), not coiled, anterior pair usually slightly shorter than the posterior pair; no lateral projections on eighth abdominal segment. Similar to larvae of C. oppositus-group.

Measurements. Head capsule length 580-660. Antenna (Fig. 5c) segments 100-112, 26-31, 8-9, 9-11, 6-8; Antennal Ratio 1.9-2.2; Ring organ 33-42 from base of 1st segment; style 39-44 bifid; Lauterborn organs and peg 5-6, about half length of third antennal segment. Mandible (Fig. 5b) 202-225, with yellow-brown outer tooth, dark apical and two inner teeth, mola yellow. Mentum (Fig. 5a) 160-170 wide, with typical triple-toothed median part and six pairs of lateral teeth of which the innermost pair are rather more closely appressed than are the remainder; ventromental plate 108-117 with 29-35 striae across median part.
-

Figure 5. Chironomus maddeni sp. nov. larva and pupa. (a)-(c) Larva: (a) mentum, (b) mandible, (c) antenna; (d)-(g) Pupa: (d) cephalic tubercles and frontal setae, (e) anterior thorax, (f) tergites (anal lobe fringe not figured), (g) posterolateral comb.

arm indicates the approximate extent of the heterozygous inversion observed in one individual), (f) Arm (, The pustulated contromere isit the lefiend Cent above the indicated hy arrow heads; N - nucleolus, B - Balbianı ring.

Larval cytology (Fig. 6a-f)

Four polytene chromosomes (Fig. 6) with the arm combination of the pseudothummi-group, i.e. BF, CD, AE, G. Large nucleolus developed near the centromere of arm F, with a smaller one developed medially in arm G . Only one inversion polymorphism, in $\operatorname{arm} A$, noted in the material available for study.

Arm B (Fig. 6a): Sequence as B2 of C. oppositus (Martin 1969; Martin et al., 1978), i.e. large puff of 2D is near the distal end with the dark bands of 2E towards the telomere.

Arm F (Fig. 6b): Sequence as F1 of C. oppositus (Martin 1969; Martin et al., 1978), including the large nucleolus at 4C.
Arms D and C (Fig. 6c): Banding pattern does not appear to correspond to any previously described sequence.
Arm E (Fig. 6d): Sequence as El of C. oppositus (Martin 1969; Martin et al., 1978).
Arm A (Fig. 6e): Differs from the previously described sequences by an inversion of approximately the region 14DI15 C 8 of sequence A4. This results in the ball of 15 E having a similar position and orientation to that of A5. However it can be distinguished from that sequence because the distal region remains similar to A4. One specimen was heterozygous for an inversion of the region from about 15D4-15E.

Arm G (Fig. 6f): Differs from arm G of C. oppositus by the nucleolus being near the middle of the arm, with an obvious Balbiani ring between the nucleolus and the postulated centromere.

Material examined

Holorype male slide-mounted in Euparal, ex-South Australia, Glen Osmond, pool in grounds of Waite Institute, University of Adelaide (Madden), reared in culture in Melbourne University Genetic Department by Jon Martin, Australian National Insect Collection (ANIC).

Paratypes, 1 male, 2 females, 10 pupal exuviae, 10 larvae, all mounted in Euparal, same data as holotype.

Comments

Cytologically this species is similar to those of the broader C. oppositus-group (i.e. including the undescribed species C. alternans b and C. altemans c (Martin and Lee, 1984)). It can be distinguished from C. oppositus by the lack of a subterminal nucleolus in arm G, and from C. alternans b and C. alternans c by the orientation of group 15E of arm A, since both the latter species have sequence $A 4$.

Although this species is distinguishable on the basis of cytology, it has not been possible to find unambiguous character states to differentiate from related species in the C. oppositus-group. However, characters that may prove of value in future differentiation include the following:

Adult: "normal" male genitalia, unpatterned wing and legs, short bristle ratio (BR) on the fore leg, longer on mid and hind legs; presence of acrostichal setae and absence of frontal tubercles.

Pupa: this stages provides less diagnostic information than in many other genera. The tergal spinule pattern, presence of spines on paratergite IV, thoracic rugosity and pigment distribution may prove significant in species differentiation.Larva: the short, uncoiled ventral tubules with the anterior pair usually slightly shorter than the posterior pairand lack of lateral projections on eighth abdominal segment typify the oppositus-group. Within this group the number of striae in the basal part of the ventromentum (29-35), and the distribution of pigment on the head capsule may allow separation from other members of the group.

